Imaging and Analysis Tools for Optogenetic Cardiac Electrophysiology

Raúl Quiñonez Uribe

Supervisors:
Prof. Dr. Stefan Luther
Dr. Claudia Richter

Max Planck Institute for Dynamics and Self-Organization
Biomedical Physics Group
Cardiac arrhythmias are characterized by excitation waves with complex spatio-temporal dynamics → Scientific challenge

Optogenetics provides the tools to overcome this challenge.

Ventricular arrhythmias ~15% of all deaths

Treatments: drug therapy, electrical shock
Optogenetics

Optics + genetics bioengineering

Control cellular activity via light-sensitive proteins

Channelrhodopsin-2 blue-light sensitive ion channel
Optogenetics

Optics + genetics
bioengineering

Control cellular activity via light-sensitive proteins

Channelrhodopsin-2 blue-light sensitive ion channel

Control of membrane voltage potential of excitable cells
neurons, cardiomyocytes
Optogenetics

Optics + genetics
bioengineering

Control cellular activity
via light-sensitive proteins

Channelrhodopsin-2 blue-light
sensitive ion channel

Control of membrane voltage potential
of excitable cells
neurons, cardiomyocytes

Action potential \rightarrow Heart electrical
synchronization
Cardiac Optogenetics

- Temporal control
 [Bruegmann, 2010], [Abilez, 2011]

- Photocurrent
 [Abilez, 2011]

- Action potential response
 [Bruegmann, 2010]

- Optical pacing properties
 [Jia, 2011]

- Spiral wave arrhythmia termination
 [Bingen, 2014]

- Control of electrical waves
 [Burton, 2015]

- Cell type-specific control
 [Zaglia, 2015]

- Defibrillation patterns
 [Crocini, 2016]
Cardiac Optogenetics

- Temporal control [Bruegmann, 2010], [Abilez, 2011]
- Photocurrent [Abilez, 2011]
- Action potential response [Bruegmann, 2010]
- Optical pacing properties [Jia, 2011]
- Spiral wave arrhythmia termination [Bingen, 2014]
- Control of electrical waves [Burton, 2015]
- Cell type-specific control [Zaglia, 2015]
- Defibrillation patterns [Crocini, 2016]
Cardiac arrhythmias are characterized by excitation waves with complex spatio-temporal dynamics → Scientific challenge

- Temporal control
 [Bruegmann, 2010], [Abilez, 2011]
- Photocurrent
 [Abilez, 2011]
- Action potential response
 [Bruegmann, 2010]
- Optical pacing properties
 [Jia, 2011]
- Spiral wave arrhythmia termination
 [Bingen, 2014]
- Control of electrical waves
 [Burton, 2015]
- Cell type-specific control
 [Zaglia, 2015]
- Defibrillation patterns
 [Crocini, 2016]
Goal

Development of an optogenetic stimulation, imaging and data processing system as a tool to investigate electrical wave dynamics with aims on ventricular arrhythmia termination.
Goal

Development of an **optogenetic stimulation, imaging and data processing system** as a tool to investigate electrical wave dynamics with aims on ventricular arrhythmia termination.

- High temporal and spatial resolution **pattern generation** for stimulation
- **Image** acquisition and analysis (voltage)
- **Closed-loop control** of the system
Optogenetic System

- Light-pattern Generation (DMD)
- Image Acquisition
- Software
- Feedback Loop
Digital Micro-mirror Device testing

• Software

• 11.45 mm Diagonal Micromirror Array
 – 912x1140 mirrors

• Pattern display mode
 – 1-Bit Binary pattern rates to 4 KHz
 – 8-Bit Grey-scale pattern rates 120 Hz

• Flash memory → 64 24-bit compressed images.
 → 24, 1-bit pattern
Light-response characterization

- Ex vivo, ChRh2- transgenic mouse hearts.
Light-response characterization

- Ex vivo, ChRh2- transgenic mouse hearts.
- Optic fiber + 470 nm LED.
- MAP electrode.
Light-response characterization

- Ex vivo, ChRh2- transgenic mouse hearts.
- Optic fiber + 470 nm LED.
- MAP electrode.

- Optical stimulation varying:
 - Optical fiber surface area
 0.126 mm2, 0.785 mm2
 - Pulse length
 1-10 ms, 15 ms
 - Light intensity
Light-response characterization

- 100% response
References

